1,968 research outputs found

    High Precision Measurement of the Thermal Exponent for the Three-Dimensional XY Universality Class

    Get PDF
    Simulations results are reported for critical point of the two-component ϕ4\phi^4 field theory. The correlation length exponent is measured to high precision with the result ν=0.6717(3)\nu=0.6717(3). This value is in agreement with recent simulation results [Campostrini \textit{et al}., Phys. Rev. B \textbf{63}, 214503 (2001)], and marginally agrees with the most recent space-based measurements of the superfluid transition in 4^4He [Lipa \textit{et al}., Phys. Rev. B \textbf{68}, 174518 (2003)].Comment: a reference adde

    Dynamics of polydisperse irreversible adsorption: a pharmacological example

    Get PDF
    Many drug delivery systems suffer from undesirable interactions with the host immune system. It has been experimentally established that covalent attachment (irreversible adsorption) of suitable macromolecules to the surface of the drug carrier can reduce such undesirable interactions. A fundamental understanding of the adsorption process is still lacking. In this paper, the classical random irreversible adsorption model is generalized to capture certain essential processes involved in pharmacological applications, allowing for macromolecules of different sizes, partial overlapping of the tails of macromolecules, and the influence of reactions with the solvent on the adsorption process. Working in one dimension, an integro-differential evolution equation for the adsorption process is derived, and the asymptotic behavior of the surface area covered and the number of molecules attached to the surface are studied. Finally, equation-free dynamic renormalization tools are applied to study the asymptotically self-similar behavior of the adsorption statistics

    Predicting the Difficulty of Pure, Strict, Epistatic Models: Metrics for Simulated Model Selection

    Get PDF
    Background: Algorithms designed to detect complex genetic disease associations are initially evaluated using simulated datasets. Typical evaluations vary constraints that influence the correct detection of underlying models (i.e. number of loci, heritability, and minor allele frequency). Such studies neglect to account for model architecture (i.e. the unique specification and arrangement of penetrance values comprising the genetic model), which alone can influence the detectability of a model. In order to design a simulation study which efficiently takes architecture into account, a reliable metric is needed for model selection. Results: We evaluate three metrics as predictors of relative model detection difficulty derived from previous works: (1) Penetrance table variance (PTV), (2) customized odds ratio (COR), and (3) our own Ease of Detection Measure (EDM), calculated from the penetrance values and respective genotype frequencies of each simulated genetic model. We evaluate the reliability of these metrics across three very different data search algorithms, each with the capacity to detect epistatic interactions. We find that a model’s EDM and COR are each stronger predictors of model detection success than heritability. Conclusions: This study formally identifies and evaluates metrics which quantify model detection difficulty. We utilize these metrics to intelligently select models from a population of potential architectures. This allows for an improved simulation study design which accounts for differences in detection difficulty attributed to model architecture. We implement the calculation and utilization of EDM and COR into GAMETES, an algorithm which rapidly and precisely generates pure, strict, n-locus epistatic models

    Local and Global Distinguishability in Quantum Interferometry

    Get PDF
    A statistical distinguishability based on relative entropy characterises the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes, of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the `NOON' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision

    Temporal Patterns of Arrest in a Cohort of Adults Receiving Mental Health Services: The Massachusetts Mental Health / Criminal Justice Cohort Study

    Get PDF
    Criminal Justice Involvement among Clientele is a Major Concern for State Mental Health Agencies. Mental health and criminal justice systems provide services at various points along the interface of these systems to reduce offending and re-offending, including: - Diversion programs - Mental Health Courts - Re-Entry Little information about scope of offending to guide service development. This study provides data on the prevalence, type and temporal patterns of arrest for a large sample of adults followed for roughly 9.5 years
    • …
    corecore